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SUMMARY

In this paper a method for solving creep buckling problems for structural members of a linear visco-elastic material is
presented. The solution is found in the form of an expansion of the eigenfunctions of the corresponding elastic problem.
The method can be used as either an analytic or a2 numerical technigue.

1. Introduction

Many engineering materials such as concrete, polymers, plastics, timber, metals at elevated
temperatures etc., exhibit a time dependent behaviour [1]. The behaviour of these materials
may often be described, at least over some limited range of interest, by a linear visco-elastic
model.

The properties of visco-elastic materials have been extensively studied [1-8] and the solution
of many linear quasistatic engineering problems have been obtained by means of the elastic
visco-elastic correspondence principle. More recently, numerical methods, making use of
finite element techniques, have been developed [9, 10], and have been used to solve more
complicated problems.

The problem of the buckling of time dependent materials, creep buckling, has. also. been
extensively studied, see for example, the survey by Hoff [11]. However a great many of these
investigations have been related to the creep of metals at elevated temperatures and have
therefore involved the use of a non-linear stress strain law; such investigations do not lie
within the framework of linear visco-elasticity. The problem of creep buckling of a linear
visco-elastic material has been investigated [8, 12-15], but only Lin [12, 13] made use of the
correspondence principle and his investigation was restricted to a particularly simple model
of visco-elastic behaviour.

It is the purpose of this paper to show how the elastic visco-elastic correspondence principle
can be used to derive the solution, from the known elastic solution, for a large class of creep
buckling problems.

2. Solution of elastic buckling problems

Many elastic buckling problems are most conveniently thought of as limiting cases of the
deformation of an “imperfect” structural member which satisfied an equation of the type:

L{v}+AM{v}+f)=0, (1

where L{.}, M{.} are linear operators, v=deflection of the member, f=imperfection of the
system, e.g. initial curvature, eccentricity of applied load etc., 1=PI?>/EI, P=applied load,
I=a typical length, E=a typical elastic modulus, I =a typical section constant.

In order to simplify the presentation it will be assumed that equation (1) depends on the
single independent variable z defined over the interval 0< z< I*, Examples of this type of
buckling problem may be found in the standard texts [16, 17].

* The extension to more complicated problems in which there are several independent variables or in which v is a
vector is straightforward and examples will be given in Section (5).
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The equations to be considered satisfy certain conditions that are generally realized ira
practice.
(i) It will be assumed that the solution of equation (1) may be written in the form

o(z)= 2 j "Gz 2)f () (22)

o]
where G is the Green’s function for equation (1) and its boundary conditions.

(ii) Itwill be assumed that equation (1) together with its boundary conditions has a denumer-
able set of real distinct eigenvalues A=A4,, 4,, 45... with corresponding eigenfunctions

v=0;, ¢,, P3... s0 that
L} + 7 M{4} = 0. (o)

(iii) Finally it will also be assumed that the solution of equation (1) can be expanded in terms
of these eigenfunctions, and thus

e o]

v(z) = Zl 0n bx(2) - (2¢)

n=

Equations (2a, b, c) lead to the conclusion that G is a meromorphic function of A and can be
expanded in the form:

G(h z.7) = i _—¢"2Z)_¢,f @) (3a)

The functions ¥, (z) will be in general solutions of the adjoint equation.
Equation (2c) may now be rewritten

where ) '
5= 1w, 69

Equation (3b) is of course the usual eigenfunction solution of equation (1).

Notice that equation (3b) implies that, if a load P=4,EI/I? is applied to the member under
consideration, the deflection v becomes infinite and the member buckles instantaneously.
Clearly the buckling load of the member is the lowest such load.

In solving an elastic buckling problem it is not necessary to obtain the complete solution (3b)
of equation (1), for since buckling occurs instantaneously, the deflections of the member and
the stresses within it only become excessive when the applied load P is close to the critical load
P,=AEI/I*>. Thus the ratio P : P, gives a good indication of the lack of serviceability of the struc-
ture. This will not be the case for the buckling of visco-elastic structures for as has been observed
by Hoff [ 11], the consideration of such systems necessitates the adoption of a slightly different
view point. This change of view arises because although-the deflections of the structure may
eventually become large this need not occur in its design life, and so the deflections and stresses
of the structure may well not exceed the allowable design deflections and stresses within the
design life of the structure. This of course means that, whether or not a particular applied load P
will render a structure unserviceable, depends on the design life of the structure, and thus in
order to judge whether and when such unserviceability is likely to occur it is necessary to know
the deflection of the system for all time v=v(P, t) not merely the critical load P,.

3. Equations of visco-elasticity

The starting point of many investigations of the stress-strain laws for a visco-elastic material
is the observation that the behaviour of a visco-elastic material, in a simple stress state, re-
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Creep buckling of structural members of a linear visco-elastic material 103

sembles the behaviour of a rheological model consisting of elastic springs and viscous dashpots
joined together by a number of series or parallel connections [6, 8].
For an elastic spring, shown in Fig. 1a, the relation between the stress ¢ and the strain ¢ is

g = E()E
while for the dashpot shown mn Fig. 1b

de
GZWOE.

Both of the above equations are conveniently rewritten

G=Ez @)
where the bar notation implies the Laplace transform e.g.
G=a(s) = j o(t)e"dt
0

E, for a spring

d where E =
and where {'705 for a dashpot .

—AAM—— -}
-
g =Ep €. G ="My %%
(a) Elastic Spring (b) Viscous Dashpot
Figure 1.

Eis called the transformed modulus of the system. The stress-strain law for all more complicated
models which can be built up by joining springs and dashpots by series and parallel connections
can be represented by equation (4) with a suitable definition of E. It can be seen from equation (4)
that for quasistatic loading the equations connecting the Laplace transforms of stress, strain
and displacement are identical to those of a corresponding elastic problem. This is the basis of
elastic visco-elastic correspondence principle for one dimensional problem. We will be
especially interested in the generalized Kelvin model shown in Fig. 2a and the generalized
Maxwell model shown in Fig. 2b. These models satisfy equation (4) with

— W —MAA— —AAAMA—
— prm— G @ @ ] L—

{(a) Generalised Kelvin Model

(b) Generalised Maxwell Model
Figure 2.
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1 d 1 . .

= = ———  for a generalized Kelvin model (5a)
E =1 Eytnus

E = Z 3 '"f"" for a generalized Maxwell model . (5b)

In order that equations (5a, b) should be completely general we must allow the possibility
of sub-elements being single springs or dashpots. Thus we must allow the possibility that

Ey=0, #n,=0, n,y,=0, E,=wo. (5¢)

Zienkiewicz et al. [ 10] state that many visco-elastic materials can be represented by a general-
ized Kelvin model. In fact all the models considered in this paper, i.e. those built up by springs
and dashpots joined by series and parallel connections, can be represented as both a generalized
Kelvin and a generalized Maxwell model. The first step in proving this result is to show the'
equivalence of generalized Kelvin and Maxwell models. This result follows directly from a
lemma due to Bland [6], p. 34, which states that if

m
=r;1 N

where «,, v, 20

then
m—1 B
1/®=E+ns + rs
/ 1 rgl s+ Uy,
where

E,n B, 1 20.

Suppose @=1/E as given by equation (5a) then an expansion of the type (5b) is obtained
for E. This shows that a generalized Kelvin model may always be converted to an equivalent
generalized Maxwell model. Similarly it may be shown that a generalized Maxwell model can
always be converted to an equivalent generalized Kelvin model.

The final step of the proof is most easily obtained by induction. Consider a system S con-
sisting of p elements and suppose that the theorem is true for all values of m, m< p. It may be
assumed that p > 1 for otherwise the theorem is trivially true. Since the elements of the model
are joined by series or parallel connections it is always possible to subdivide the system into
sub-systems S,, S, containing p,, p, elements respectively where 1< p,<p, 1<p,<p, p=
py+p,. Clearly both p,, p, are less than p and thus the theorem may be taken as true for the
systems in S, S,. There are now just two possibilities

(i) S, S, are connected in series. In this case represent S,, S, by generalized Kelvin model.
Then S is a generalized Kelvin model. It follows from Bland’s lemma that S can also be
represented by a generalized Maxwell model.

(ii) S, S, are connected in parallel. In this case represent S,, S, by generalized Maxwell
models. Then S is a generalized Maxwell model which by Bland’s lemma can also be
represented by a generalized Kelvin model.

Thus it has been shown that if the theorem is true for all m< p then it is true for m=p.

The result is clearly true when p=1, 2 and so the theorem follows by induction.

The extension of the concepts of linear visco-elasticity to three-dimensional isotropic
situations were pioneered by Lee [4] and Bland [6]. This extension relies on the observation
that, if a material is isotropic, the application of a hydrostatic stress leads only to a dilation of
the material. This observation when coupled with the assumption of isotropy implies that a
deviatoric stress produces only a deviatoric strain. For such a material the deviatoric and
volumetric behaviour are uncoupled. It is then usual to suppose that the volumetric stress and
strain are related by one mechanical model while the deviatoric stresses and strains are related
by another. Thus if 6, &;; denote the cartesian components of the stress and strain tensors and

s;;» €;; denote the components of the stress and strain deviators

€= 33kk‘3

S"=U 30kk5117 ij lJ

t
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then the stress strain law may be written in the form
§ij == 2GEU s &kk = 3Kékk (68., b)

G, K are derived from mechanical models of the type discussed earlier in this section. These
models can be represented as a generalized Kelvin model

: N Z Ed1+rld1 vt+’7m

and where the limiting cases of the type described by equation (5c) are still possible. Again it
can be seen that for quasistatic problems the equations connecting the Laplace transforms of
stress, strain and displacement are formally identical to those of a corresponding elastic
problem and thus equations (6a, b) provide the basis of the correspondence principle for quasi-
static problems as detailed in References [3, 4].

It is sometimes useful to rewrite equations (6a, b) in the form

E = Z E (73» b)

14+v

Q

ij

Ope 0y (8a)

fry| =<

& =%
where
K-3%G £ 3KG
2(K+3G)’ (K+3G)~
In order that the theory should be self consistent it must be shown that the equation (8c)
derived from three-dimensional theory does not conflict with the one-dimensional theory,
equations (Sa, b, c). That is that the axial behaviour can be derived from a generalized Kelvin
or generalized Maxwell model. To do this it is useful to consider one dimensional models such
that

(8b, ¢)

V=

6= G& (Deviatoric model)
= K¢ (Volumetric model),
Equation (8c) can be rewritten in the form
ol
E 3G 9K

When this equation is interpreted in terms of mechanical models, the axial model shown in
Fig. 3 is obtained. This is clearly of the type considered in the one-dimensional theory and thus

. D . —1Vr—

G K

Deviatoric Model Volumetric Mode!

V1
Vz

Axial Model =

E

T

Figure 3.
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the axial model derived from the three-dimensional theory is consistent with the one of one-
dimensional theory.

It will be useful in later applications to consider a visco-elastic material which has a constant
Poisson’s ratio, this may prove a close approximation (over a limited range) for many materials
and has the advantage that it greatly extends the class of problems for which a solution can be
found. For such a problem there is just one rheological model as the volumetric and deviatoric
models are simply proportional. ~

4. Solution of visco-elastic buckling problems

In many problems it is found that the deflection, of an “imperfect” visco-elastic member which
obeys stress strain laws of the type (6, 7), is governed by an equation of the form:

LY+ AM {3y +f)=0 (9a)

where the notation of Section 2 has been retained and where A= PI?/EI, E =the transformed
elastic modulus, f=f/s describes the initial imperfections of the system.

In an elastic analysis the imperfection f does not play an important role since the structure
will buckle instantaneously at the critical load P= P, no matter what form this imperfection
takes, although for loads less than the critical load the imperfection controls the limit of linear
behaviour which governs the range of validity of the theory. However as was indicated previ-
ously, in designing a visco-elastic structure it is important to have some idea of the way in which
the deflection varies with time and thus for visco-elastic problems the imperfection may play
anon-trivial role. As for the elastic case the imperfection will control the limit of linear behaviour
and thus the range of validity of the theory.

It will be assumed that the boundary conditions of the visco-elastic problem, equation (9a),
are identical to the boundary conditions of the analogous elastic problems, equation (1). This
means that the eigenfunctions ¢,(z) of equation (1) automatically satisfy the boundary con-
ditions of equation (9a). In fact equation (9a) and equation (1) are identical except for the change
of notation:

00D, A-Ad, fof.
The solution of equation (9a) therefore follows directly from equations (3) and thus

R
v = n;1 S(/l,,“‘j) ¢,,(Z) . (9b)
It will be assumed that the elastic solution, equation (3b), is known a priori. Thus there is no
need to enter into a discussion of the validity of the operations leading to equation (9b) as it
may be assumed that these will have been justified in establishing the elastic solution.
The final step in the solution is to obtain the inverse Laplace transform of equation (9b).
To do this it is convenient to introduce the function A (¢, ) defined by means of its Laplace
transform

7 E./E

Ad=——=
s(u—E,,JE) (102)
where E, = lim E(s) (10b)
s=0

E_, can be identified with the elastic modulus of the material at infinite time, by applying the
Tauberian Theorems for Laplace transforms, Reference [18], to equation (4).
Similarly these theorems can be used to show that the quantity E, given by

Eo = li.m E(S)

s

can be identified with the instantaneous elastic modulus of the visco-elastic material.
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It was shown previously that the transformed modulus can be derived from a generalized
Kelvin model and thus using equation (5a),
E oo,

¥ 8- ay

where a,=E /i, by=E,/n;.
No generality is lost if it is assumed that 0< b, < b,... <b,,. The function F(s) defined by
equation (11) has the following easily derived properties:
(i) F(s)»+o0, s——b,+0
F(s)»—o0, s —b,—0
(ii) F'(s)<O for all s# —b,
(iii) F(s)—>E/E, as s—o0
E, denotes the elastic modulus for t=0+. (Note that E,—oo if #,#0, k=1, ..., m;
however if #,,=0 then E, takes a finite value.)
(iv) F(s)=1 when s=0.
Properties (i, ii) follow from the definition of F(s) while properties (iii, iv) follow from the
Tauberian theorems for Laplace transforms. These properties show that F (s) can be represented
schematically as shown in Fig. 4.

ly

«<

]
=]

"
&)

ot
50
3

~
~,
~
~

———————— Y= Ee/Eq

Figure 4. Schematic representation of the function y="F(s).

The line y =« intersects the curve y=F(s) at the roots of F(s)—a=0. Referring to Fig. 4 it is
obvious that there are m real roots s=—¢;(x), i=1, 2, ..., m. If equation (11) is substituted
into equation (10a) it can be seen that A is a rational function of s, the degree of the numerator
is m—1 and the degree of the denominator is m+ 1. If we now expand A in partial fractions we
see that

Afs, @) = Aos(a) B k§1 S fkc(kozx) "
where
Aolt) = ——, Aa) = ;
o) = =70 A= o F o)
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The inverse Laplace transform of equation (12) is now readily found and thus
Aft, @)= Ao (o) + él A4(#) exp (— (@) 1) - (13)
The functions 4 (t, &) can now be used to obtain the inverse Laplace transform of equation (9b)
and thus we have
0= 3 44 (8722 4. (14a)

where P, =the critical load for a material with elastic modulus E_ =4, E_I/I*.
Equation (14a) is not in general the most convenient form for numerical calculation. Suppose
that v, denotes the elastic solution corresponding to an elastic modulus E=E, then

vo—ZfA< = P>¢n()

so that

v=v0+n§1ﬁ,[A<j:—1P?> A<O i };ﬂ 6.(2). (14b)

This form of the equation is well suited for calculation at small times.
Similarly if v=wv,, denotes the elastic solution corresponding to an elastic modulus E= E,
then

o= 3 ha (o 22 0,00
and thus

v=vw+§fn[A<j—1£P—>—A< j—lp—>}¢"(). (140)

Equation (14c) is suitable for calculations at large times.

It is possible to discuss the behaviour of equations (14) qualitatively. We shall suppose that
P =0 and will denote the critical loads for the elastic problems with E=E,, E_ by P.=P,, P,
respectively.

Po=AE I/, P =i E I/P.

First notice that for a given value of P

A, P Aw P
A(“Zii)”(fi)”

when 4, < 4, and thus the behaviour of v will be dominated by the behaviour A(t, P/P,).
Now consider the behaviour of the function A (¢, P/P,,) as P increases from zero. First notice
that no matter what the value of a=P/P,:

(o) >0 k=2,3,...,m
¢, (x) may be positive or negative, it can be seen from Fig. 3 that
¢ (@)>0, 0<P<P,_,
c(@)<0,P, <P<P,,
¢ (@), P - P,.

It may therefore be concluded that:
(@) If 0< P< P, the functions A[t, 4,P/(A,P,)] contain only negative exponentials and
hence no buckling occurs.
(b) If P, < P< P, no instantaneous buckling occurs but because of the presence of positive’
exponential terms the displacement diverges with time and creep buckling occurs.
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(¢) If P=P, instantaneous buckling occurs.
These results are as would be expected and remain valid for the special cases noted in equation

(5¢).

5. Solution of particular problems

5.1. Buckling of an axial column

Consider the eccentrically loaded column shown in Fig. 5. O is the centroid of the section, the

column is assumed to have a deflection » in the y direction. It is also assumed that the axial
load P is applied at a distance d below the centroidal axis at time ¢=0 and that dynamic

. (@] a{—-z
P 49 P o) <
D Die
Figure 5.

effects may be neglected. If the usual kinematic assumptions of simple beam theory, are used
it is found that
0*v
€ n+(y ’7) a ZZ ( )
where ¢,=the strain of the neutral axis of bending and y=# denotes the position of this axis.
The stress-strain law for the material may be written in the form 6 = EZand thus from equation

TP X w0

where g denotes the Laplace transform of (9% v/0z?). At this stage there is no basis for assuming
that the neutral axis of bending coincides with the centroidal axis.

The internal stress ¢ must be in equilibrium with the axial load P, it then follows from equation -
(16) that if A is the area of the section

P/s=A(E:,—q). (17a)

If it is assumed, as is done in the elastic theory, that ¢, is the axial strain when no bending
occurs it is found that

P/s=AEE, . (17b)

Combining equations (17a, b) it follows that §=0 and thus that # =0 and so the neutral axis
and the centroidal axis coincide.
If now equilibrium of moments is considered, it follows from equation (16) that the moment
M is given by
— %
M=EI R
where [ is the second moment of area of the section.
It follows from simple statical considerations that

M = —P(v+d) (18)
combining the last two equations it is found
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0*v PP ( d)
P+ =0+~ )= 19
oz TEI\V )70 (192)
This equation is subject to the boundary conditions
7=0, x=0, (19b)
=0, x=1I.

(19¢)
Equation (19a) may also be derived as follows. Consider a simple beam subject to moment
M=M{z,1), it follows from the theory of elasticity, on suitable approximation, that
0?v
I— = .
E dz* M

The correspondence principle then shows that, provided the approximations made in elastic
theory remain valid, viz. equations (15, 17) then for a visco-elastic beam
— 0 _
EI =M
oz*

Statical considerations again lead to equation (18) and thus equation (19a) follows.

Equations (19a, b, ¢) are of the type considered in the previous section. In order to obtain

a solution, the eigenvalues and eigenfunctions of the equation,
2

5
1252—'2’+zv=0

subject to the boundary conditions, v=0 when x=0, x=1, are required.
These are well known from the solution to the elastic problem and thus
Ao=n*r?, ¢,=sin (nnz/l), ¥, = (2/])sin (nnz/l),
and thus for the particular problem being considered

fu=2d(1—cos nn)/nxn

and so
_ 4d L cos(nnz/l)
v=— s
T o aga B —4 n
whence
4d A(t,nP_ /P
U= — Mcos (nmz/ly .
T p=odd n
—VV\M—
E
— NV  —
Eq —
mall,
T2
Figure 6.

For the particular case of a material whose behaviour follows the three parameter model shown
in Fig. 6 the transformed modulus is given by

1 1 1

= — .
E Ey  Ej+n;s

This model has an elastic response for both small and large time and it is found that
Ey=E;, E,=E E3/(E;+E3).
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It follows from the well known elastic theory that

b g - deosIR(P/R) -] 1)

cos [z (P/Py)}/2]
and
P - T E Eyl o = dleos [m(P/P, ) (z/1-3)]—1)
© T (E(HE)E T cos [n(P/P,)/2]

for this particular material

A (s’ "2:w> T P: —P [é T (2 ;:(—P;)—(SP:;,,/I)}

where ,
Py(n*P,—P)
=n./E = _0\7 "o )
T ’72/ 1> yn Poc (HZPO—P)
and thus
A(t, nsz) _ P [1 N nz(PO_Poo) e—ynt/t:i
P n*P,~P (n* P,—P)
either of the forms
n(P,—P,)P - (nmz)
= d 1—e ™7y sj
v=Uo ";;dd (P, —P)(nZPO—P)( e ) sin
n(Py—P,)P .
v=uv, + oo) e — nt/T sin —2 (TlTCZ)

noaa (n* P, —P)(n* P,—P)

may be used for numerical calculations.
5.2. Buckling of a plate

Suppose O,, 0,, 0, are a set of reference axes, consider a plate lying in the plane z=0, let w be
the deflection of the plate in the z-direction. If this plate is acted upon by a resultant distributed
load Q(x, y, t) in the zdirection then it follows, from the theory of elasticity together with the as-
sumptions of small deflections of thin elastic plates, that
o*w  20%w @t w)
(s 2w 0
ot oy? + oy* Q
where D=Eh*/12(1 —v?), h being the plate thickness.
It now follows from the correspondence principle that if the same approximations remain
valid for a visco-elastic plate then
*w 20w o* W) ~
+ 2T 4y )= 20
Dl 5w oV aar T o) =2 (20)

where I' =Eh?/12(1—7?).

Supr : se that the plate is subject to an actual constant applied load g together with in-plane
forces i, N,, N,,. If the deformed shape of the plate is taken into account, these in plane forces
will co: tribute a component in the vertical direction and it may be shown ([16]) that the
resultant distributed load is

0w 0w *w
=g+ N, N, -5 + 2Ny 7>
Q=q+N, ox? + Y oyt + 2Ny Oxdy
Equation (20) then becomes
_[d&*w  20*W a“w) q o*w *w 0w
Dl—+4+———+—-5)=—-+N,—5 +2N,——+ N, —-. 21
<8x4 + ox*oy* + oy* s P % ox? 2 0xdy N oy* 1)
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Consider the simply supported rectangular plate, shown in Fig. 7 which is subject to an axial
thrust N,= — N. For this case it is necessary to solve equation

otw o*w *w _<62v_v q(x y)>
242 W - " PR . LA .
a’b <6x4 25 T 6y4)+ o " Ns )70

subject to the boundary conditions

o*w  0*w
W=0,va}¥+a—x‘:=0, x=0,x=a,

a*w  0?w
W:O,va—;:+a~yl:—=0, y=0,y=5b,

where it has been assumed that the material has a constant Poisson’s ratio, i.e. =v, and where
i=Na*b?/D.

*.V
——) 0 e
Ny =- N . = Ne=-N
E— e
x

Figure 7.

The elastic eigenvalues are

(m2n2/a2+n2n2/b2)2 5
mn = a

A=A b?, m=123..,n=1273..

m2n?/a®
and the corresponding eigenfunctions
w = ¢,,, = sin (mnx/a) sin (nmy/b)

and so it is found that;

W= — Ji\f mgl ";l S(Tf—ﬂ Gma S (M7x/a) sin (nmy/b) (22)
where
4a @ b .
Gon = 775 . q sin (mnx /a) sin (ny/b) dx dy
and thus o . PPt N N

Where N, denotes the critical load for an elastic plate with E=E
No =D (r?/a*+n* /b /(n?/a?) .

It is perhaps worth noting that in this simple problem the eigenvalues 4,,, are independent
of Poisson’s ratio. Thus equation (22} is valid for the case in which ¥# constant. An equation
of the type (23) can be obtained now using the methods developed in Section 4 provided the
mechanical model corresponding to D is substituted for the mechanical model corresponding
to E. This model is shown in Fig. 8.

V]

= {D] -

Figure 8.
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6. Conclusions

A method of solving creep buckling problems for a linear visco-elastic material has been
presented which uses the eigenvalues and eigenfunctions of the simpler elastic problem in
order to generate the solution of the visco-elastic problem. The method is extremely flexible
and can be applied to a large class of structural creep buckling problems. The range of ap-
plicability is considerably extended if it is possible to assurme that the Poisson’s ratio of material
is constant. Several examples of the application of the method have been given. It should be
emphasized that the technique is not merely an analytic technique but'may be used as a numer-
ical technique, i.e. the eigenvalues 4, and the eigenfunctions ¢, may be determined numerically
and need not be known analytically. In practical problems it will generally be sufficiently
accurate to consider only the first few eigenvalues as these dominate the subsequent behaviour
of the structure. ,

It should be noted that this theory only remains valid while the material is perfectly visco-
elastic. It is no longer applicable when irreversible deformation occurs and plastic regions
form. However at this stage the structure is likely to be unserviceable and thus the incidence of
first yield forms a convenient basis for estimating the life of the structure.
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